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Abstract – Artificial intelligence tends to engender a 
healthy amount of distrust among non-technical users 
who do not understand the inner workings of complex 
machine learning models. This lack of trust is especially 
noticeable in areas where decisions have profound 
impacts on health and safety. Explainable AI has the 
potential to promote trust in and understanding of tools 
built on complex models. This study looks at the potential 
for explainable AI to bridge the trust gap in medical 
settings and how it might look in practice. 

 
I. INTRODUCTION 

Explainable AI is an area of artificial intelligence that 
focuses on enabling transparency into the reasoning behind 
the output of complex AI models, which are naturally “black 
boxes” to people who are non-experts in AI domains. Such 
transparency would certainly be desirable in any situation, but 
is of special importance in areas where humans are expected 
to rely on AI when making decisions that affect health and 
safety. Medicine is a field where its inherent complexity 
makes it a promising area for AI-based innovation, but proves 
to be a challenging target due to its impact on human life and 
the lack of technical expertise possessed by healthcare 
providers in matters of AI [1]. 

The overarching goal of healthcare providers when caring 
for patients is to restore health and quality of life while 
minimizing risks, especially that of death. The ability to 
predict patient mortality in-hospital is of great benefit to 
providers, and length of stay (LOS) is one of the most 
common metrics used to determine a patient’s morbidity and 
mortality risks. LOS predictions have been well-explored with 
a variety of machine learning methods, such as decision trees, 
random forests, and convolutional neural networks [2],[3]. 
However, the correlation between inpatient complications and 
LOS is not always clear [2], and LOS is also used to estimate 
administrative factors that are of more concern to managers 
than doctors [3]. Indeed, one study of over 12,000 hospital 
admissions found that when physicians tend to prioritize 
shorter LOS, a patient’s 30-day risk of mortality increases 
greatly [4]. 

Thus, focusing more directly on risks to the patient and the 
factors that drive those risks seems likely to improve health 
outcomes for patients. This is a task well-suited to explainable 
AI, which can bridge the gap between innovation and caution 

with trust, by offering domain-specific insight into the process 
by which a highly technical tool arrives at a particular output 
that could affect a patient’s well-being. 

This research focuses on an approach to mortality risk 
prediction using explainable AI that allows healthcare 
providers to examine a given patient’s risk based on complex 
data, and to easily assess the reasoning behind a model’s 
predictions. Explainability in this system is driven by detailing 
which features are of greatest significance for each prediction, 
and to what extent they affect the prediction. 

II. METHODOLOGY 

A. System Design 
At a high level, the system contains four primary 

components. First is the data pre-processing pipeline in which 
data undergoes feature engineering, transformation, and 
imputation. Next is the predictive layer, a “black box” 
LightGBM gradient-boosting model. Third is the explainable 
layer for analyzing the reasoning behind the black-box 
model’s predictions and providing a domain-relevant 
analysis. Last is the Python application that allows user 
interaction with the system. 

B. Dataset 
The dataset used in this study to train and validate the 

predictive model is the GOSSIS-1-eICU subset of the Global 
Open Source Severity Illness Score (GOSSIS-1) dataset, 
obtained from PhysioNet1. It contains 131,051 patient records 
with 216 features, collected from more than 200 hospitals 
across the United States from 2014-2015. All data was 
collected within 24 hours of patient admission to an ICU and 
excludes: 

 
• Patients less than 16 years old 
• Patients whose heart rate was not recorded 
• Patients who were readmitted to the ICU 
• Patients for whom the mortality outcome was not 

recorded 
 

The GOSSIS-1-eICU set provided a preprocessed dataset 
that did not require training and testing data to go through the 
described preprocessing pipeline; however, new data, 
including records sourced elsewhere and synthesized data, 
that is used for predictions does require preprocessing. Minor 

1 Used with permission of PhysioNet under terms of research usage.  



changes were made to the preprocessed dataset to remove 
metadata categories that had no effect on the target feature. 
1,000 records were split from the dataset and reserved for 
manual testing, and the remaining records were split between 
training (80%) and evaluation (20%). 

 

C. Predictive Layer 
Gradient boosting is a technique that combines several 

weak learners, often decision trees, in an ensemble, where 
each model learns from the training of the prior model to 
gradually increase its accuracy. Gradient boosting is 
commonly applied to classification problems, especially 
those that rely on tabular datasets. 

In this study LightGBM was chosen for gradient boosting 
because it excels at handling very large datasets and has built-
in support for explainability. The model was tuned to focus 
on recall ability without sacrificing generalization. To control 
tree complexity, each sub-model was limited to 31 leaves and 
a maximum depth of 7, while requiring at least 20 samples 
per split and 500 samples per leaf to avoid overfitting. 

The model's learning rate was set to 0.03 across 1,000 
boosting rounds with early stopping to maximize 
convergence. Feature subsampling was used at a rate of 20%, 
and together with moderate regularization also helped to 
mitigate overfitting. Class imbalance was handled by 
applying the ratio of negative to positive samples as a class 
weight. 

During this study an ensemble model was considered as 
well that would combine the LightGBM model with a neural 
network designed for analyzing tabular data, and make a final 
prediction using another gradient-boosting algorithm. 
However, the ensemble model did not evaluate well despite 
extensive tuning, so the LightGBM model was chosen to 
stand alone in the predictive layer. 

D. Explainable Layer 
Several explainability methods were explored for this 

study, and ultimately SHapley Additive exPlanations (SHAP) 
was chosen for its simplicity, human readability, and ease of 
integration with LightGBM. This method uses Shapley 
values from game theory to provide a significance score to 
various features that drive a model’s prediction. SHAP 
provides the model with easily readable explanations – 
features with positive values contribute to a prediction, while 
features with negative values detract from a prediction. 

E. User Interface 
The application devised for model interaction in this study 

was built with Python 3.13, using the following packages for 
model development and deployment: pandas, numpy, 
lightgbm, shap, sklearn. It provides a semi-automatic way to 
check individual patient records from the 1,000 records 
separated from the full dataset. The application loads one 
record at a time and displays the patient’s chart to the user. 
After displaying each chart, the model generates the patient’s 
predicted mortality risk along with the top features that 
contributed to the prediction, listed in order of significance 
with percentages. The program also provides to the user the 

option to generate SHAP waterfall plots for a visual aid in 
understanding each prediction. 

III. RESULTS 

A. Evaluation 
The predictive model was evaluated with several metrics 

(precision and recall are for the positive class only, death in 
this study): 

TABLE I.  PREDICTIVE MODEL EVALUATION 

ROC AUC PR AUC Precision Recall 
0.90 0.58 0.28 0.86 

 
The most important metric here is recall, for which the 

model scored 86%. Also known as the true positive rate 
(TPR), recall measures the model’s ability to correctly predict 
patient deaths relative to all actual patient deaths. The higher 
recall is, the less likely the model is to miss when a patient 
has an increased mortality risk. While the low precision 
means the model will flag many false positives, and there is 
certainly room for improvement to increase the model’s 
utility and reduce false alarms, recall is of paramount 
importance for such a high-stakes prediction like risk of 
death. 

B. Explanation 
Shapley values are output by the explainable model along 

with the top ten features that most strongly influence the 
model’s prediction, and formatted for readability and 
interpretability by a domain expert in the Python application. 
Figure 1 shows an example of significant features and their 
corresponding importance to a prediction. Red (positive) 
values point to the right and contribute to the model’s 
prediction, while blue (negative) values point to the left and 
detract from the model’s prediction, making it less likely to 
predict the positive class (death). The graph can be read from 
bottom to top, with each value pushing the prediction toward 
or away from the positive class. 

 
Fig. 1. SHAP waterfall plot showing feature importance. 



Figure 2 shows the output of the Python application 
corresponding to the waterfall plot, and includes the mortality 
risk as a percentage. 

 

 
Fig. 2. Python program output showing top features and predicted in-
hospital mortality risk. 

The program also displays the actual result of a patient’s 
stay in the hospital when manually evaluating test data from 
the GOSSIS-1-eICU dataset. Manual testing seemed to 
validate the recall vs. precision imbalance, with predictions 
tending to be overly cautious in favor of patient care. This 
was an interesting observation because although the model 
demonstrated low precision during evaluation, the final 
output of the model is not a binary classification but rather a 
percentage. Given both the complexity of medicine as a 
science and the interventional care received while in-hospital, 
it would be reasonable to expect that the majority of patients 
who are admitted to the hospital would survive despite some 
having a high risk of death. 

IV. DISCUSSION 
While initial results demonstrate utility to non-technical 

users, there are several areas where the models could be 
improved. Precision of the predictive model could be 
increased with further parameter tuning, or possibly through 
feature engineering. The explainable model could be 
evaluated and validated by domain experts to ensure that the 
SHAP values generated are reasonable and expected given 
the corresponding patient records. Further research and work 
could also yield more useful application given feedback from 
domain experts in real-world settings. 

V. CONCLUSION 
As artificial intelligence becomes increasingly prevalent 

across all areas of life, the need for explainability will grow 
tremendously. In areas of critical importance such as 
healthcare, where AI has the potential to cause great harm as 
well as provide great benefit, explainability is a necessary 
feature that must be ingrained into the design of AI-based 
systems to promote trust and ensure safety. 

Providing interfaces that interpret not just the results of 
diagnostics and predictions but also the reasoning behind 
those results is a key factor in driving adoption of AI in these 
areas. To that end, this study developed a simple yet effective 
interface design that clearly conveys the target prediction, 

risk of mortality, and the significant features influencing that 
prediction, in both tabular and graphic formats. Healthcare 
providers are more likely to utilize AI-driven tools such as 
this when they are provided with interfaces that instill 
confidence in the tools’ abilities through features such as 
domain-relevant insights. 
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